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Aerosol Volatility and Optical Properties

Light absorption by particles from
black carbon (soot) and carbon

Coatings on BC can theoretically
enhance absorption in climatically
important ways

[e.g. Jacobson, Nature, 2001]

Enhancement factor can be calculated
from Mie theory, but limited validation
from ambient measurements

Objective: to directly measure the
absorption enhancement factor for
ambient particles at multiple
wavelengths
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Approach: Heat Particles to Drive Off Coatings

Ambient Really hot
Large Enhancement Small Enhancement
Highly Scattering Less Scattering
Brown Carbon No Brown Carbon

Absorption by brown carbon should contribute more to total absorption at short A
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Measurements

Note: PM1 cutoff

Aerodyne UC Davis

lor

PAS/CRD
Non-refractory BC & coating Particle Size BC mass
particle composition absorption Distribution  distribution
composition & extinction

* PAS/CRD measures light absorption and light extinction at 532 nm and 405 nm
* SP-AMS measures BC mass and coating composition
* SP2 measures BC mass and infers coating thickness

e SP2 and SPAMS tell us something about how coating thickness has changed
upon heating

* SP2 BC measurement can tell us about particle losses through the TD
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Particle Transmission Correction

Coefficient values £ 95% Confidence Interval
intercept = 0.945 + 0.0442
slope = -0.00082974 + 0.000289

Similar results to Huffman et al. (2008): Tr = 0.98 — 0.00082*Temp
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Extinction (Mm ™)

Influence of heating on particle extinction (532 nm)

Black = ambient
Red = denuded
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Influence of heating on particle extinction
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Fraction Extinction Remaining
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Start of Campaign

Lines are binned data over

different time periods

Total aerosol volatility varies
greatly with time/location

Very similar results from SMPS
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Absorption Enhancement

Absorption Enhancement

Influence of heating on particle absorption

Eabs -

|

b,ps(ambient)

babs (TD )

53|2 nm

1 T @, T C

‘I"
1

|

"I' "I' ‘I"
l l

Loy At 1T e
R .

50

100

150 200

2k |

g Dy re R

405 nm

1

50

100

150 200

TD Temperature (deg C)

abs,ambient

Note: only include
periods when

b

> 0.5 Mm-!



Absorption Enhancement (532 nm)

Absorption Enhancement (405 nm)

Influence of heating on particle absorption
e b,ps(ambient) -
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SSAcold - SSAhot
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Theoretical Calculations of Aerosol Optical Properties

Use “core-shell” Mie theory to calculate evolution of o,

G, and SSA

/

D, (particle) = 400 nm
D,(core) = 80 nm

O.ps = 9.8 x 101> m?/particle
o.,.. = 2.9 x 1013 m?/particle

ext

SSA =0.97

D, (particle) = 200 nm
D,(core) =60 nm

O.ps = 2.9 x 101> m?/particle
o.,.. = 1.5 x 10'1* m?/particle

ext

SSA=0.81

E,., =2.57
— FR,, = 0.015 —>
ASSA = 0.84
E,., =1.45
— FR,,=0.19 —>
ASSA = 0.65

\

D (particle) = 100 nm
D,(core) = 80 nm

Ops = 3.8 X 101> m?/particle
o... = 4.4 x 101> m?/particle

ext

SSA=0.13

D (particle) = 120 nm
D,(core) = 60 nm

O,ps = 2.0 x 101> m?/particle
o.,.. = 2.8 x 101> m?/particle

ext

SSA=0.16
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SSAg - SSApt
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Absorption Enhancement

Mie “Core-Shell” Results
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Absorption Enhancement

Mie “Core-Shell” Results
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Frequency

Since we are talking about California anyway...

same experiment done at CARES, but with fixed TD temperature (225 °C) and PM, .
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Why such an (unexpectedly) low absorption enhancement?

1. Concern: particles are not internally mixed
Q-

|II

2. Particles are internally mixed, but not with “core-shell” morphology



H-TDMA indicates aerosol dominated by single growth mode

150 nm
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Coating/Core Volume Ratio or SP-AMS lon Ratio
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Brown Carbon Absorption

~10% of absorption at 405 nm may be due to “Brown” Carbon
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Conclusions

1. Absorption enhancements much smaller than expected
2. Suggests internal mixtures but not with “core-shell” morphology

3. Absorption by “brown” carbon ~ 10% of total at 405 nm

Thanks again to all my great collaborators, the R/V Atlantis Crew and
the EPA and NOAA for funding.



